

School of Public Health & Stanley S. Scott Cancer Center

Defining Epidemiology

- "...the study of the distribution and determinants of health-related states or events in specified populations and the application of this study to control of health problems."
- --Last, 1988, The Dictionary of Epidemiology

Another Definition of Epidemiology

- "The science of making the obvious obscure."
 - --Anonymous Epidemiologist

Epidemiology Defining Itself

Etymological derivation: From the Greek

- "Epi" on/upon +
- "demos" the people +
- "logos" theory or study of

Characteristics of Epidemiology

• Concerned with the *frequencies* and types of illnesses and injuries in *groups* of people and the *factors* that influence their distribution.

Characteristics (Continued)

- > This implies that disease is **NOT** randomly distributed throughout a population, but rather that subgroups differ in the frequency of different diseases.
- Knowledge of this uneven distribution can be used to investigate causal factors and thus to lay the groundwork for programs of prevention and control.
- Can similarly be used to study consequences of different treatments

Prevalence vs. Incidence rates

Prevalence

Proportion of persons in a population who have a particular status (presence of disease or some other health-related condition) at either

- 1) A specified point in time
- 2) A specified period in time

> Point vs. period prevalence

Incidence

Incidence

> The rate of new occurrences of a condition in a population

- = (New occurrences of a condition [=event]
- during a specified time period / the population during that same specified time period)

Study Designs In Epidemiology...

> Basic Considerations; Fundamental Designs

The next step in determining causation: Conducting Studies in Human Populations
Observational Epidemiology often key here....
Allows capitalization on "natural" or "unplanned" experiments.
> Take advantage of groups who have been exposed for non-study purposes.

Ecologic Study

- Units of analysis are populations or groups of people, rather than individuals.
- Often exploit pre-existing data collected for other purposes
- > Efficient and economical design

Key potential limitation: The ecologic fallacy

- Attributing to members of a group characteristics that they do not possess as individuals
- E.g., only know average values of fat consumption by country
- Don't know if individuals with breast cancer had higher fat intake

Cross-sectional Study

- Draw sample from population of interest at particular time
- Identify cases and non-cases of disease
- Measure characteristics (exposures)
- Examine associations between characteristics and disease

Example: Is stress associated with symptoms of TMD?

- Random sample of population (N=680)
- Interviewed re: symptoms of TMD (pain, joint sounds, limited opening)
- Measure of life stress

Cross-sectional studies: Can assess associations Cannot establish correct temporal relationship for inferring causation Why? Factor and disease measured at same point in time

	 Then follow to Disease 	see whether Disease does	Totals	Rates o
	develops	not develop	rouns	Disease
Exposed	а	b	$\mathbf{a} + \mathbf{b}$	<u>a + b</u>
elect Not exposed	c	d	c + d	$\frac{c}{c+d}$
1				

Advantages of cohort studies

- Temporal relationship more certain
- Less opportunity for distortion of exposure data
- Can examine multiple disease outcomes

Drop out in cohort study of oral health of older adults				
Baseline	N=907			
3 years	N=611			
7 years	N=425			

The Two Major Flavors of Cohort Studies: It's All in the Timing

